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Shear-thinning-induced chaos in Taylor-Couette flow

Nariman Ashrafi and Roger E. Khayat*
Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, Canada N6A 5B9

~Received 12 April 1999!

The effect of weak shear thinning on the stability of the Taylor-Couette flow is explored for a Carreau-Bird
fluid in the narrow-gap limit. The Galerkin projection method is used to derive a low-order dynamical system
from the conservation of mass and momentum equations. In comparison with the Newtonian system, the
present equations include additional nonlinear coupling in the velocity components through the viscosity. It is
found that the critical Taylor number, corresponding to the loss of stability of the base~Couette! flow, becomes
lower as the shear-thinning effect increases. That is, shear thinning tends to precipitate the onset of Taylor
vortex flow. Similar to Newtonian fluids, there is an exchange of stability between the Couette and Taylor
vortex flows, which coincides with the onset of a supercritical bifurcation. However, unlike the Newtonian
model, the Taylor vortex cellular structure loses its stability in turn as the Taylor number reaches a critical
value. At this point, a Hopf bifurcation emerges, which exists only for shear-thinning fluids.

PACS number~s!: 47.50.1d, 05.45.2a, 47.32.2y, 47.20.2k
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I. INTRODUCTION

The interplay between inertia and shear-thinning effect
examined for axisymmetric Taylor-Couette flow~TCF! in
the narrow-gap limit. Shear thinning is an inherent prope
of polymeric fluids used in materials processing. The rate
shearing during a polymer process can be high enough
the viscosity to change typically by a factor of 1000. It
therefore not realistic to assume that the viscosity, which
directly related to the rate of strain, be constant as in
Newtonian case. However, the presence of a rate-of-st
dependent viscosity gives rise to additional nonlinearities~in
addition to inertia! and coupling among the flow variables

Similar to any flow in the transition regime, the TCF
non-Newtonian fluids involves a continuous range of exci
spatiotemporal scales. In order to assess the effect of
smaller length scales on the flow, a high resolution of
flow field is needed. It is by now well established that lo
order dynamical systems can be a viable alternative to c
ventional numerical methods in the weakly nonlinear ran
of flow @1,2#. Despite the severe degree of truncation in
formulation of these models, some of the basic qualitat
elements of the onset of Taylor vortices and destabiliza
of the cellular structure have been recovered using low-o
dynamical systems.

Kuhlmann@3# and later Kuhlmann, Roth, and Lu¨cke @4#
examined the stationary and time-periodic Taylor vor
flow ~TVF!, in the narrow-gap limit and arbitrary gap width
respectively, with the inner cylinder rotating at a consta
and harmonically modulated angular velocity. The solut
to the full Navier-Stokes equations was obtained by imp
menting a finite-difference scheme, and an approximate
proach based on the Galerkin representation. Compariso
flows based on the two methods led to good agreemen
severe truncation level was used, leading to a thr
dimensional system, which turned out to be the Lorenz s

*Author to whom correspondence should be addressed. Electr
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tem with the Prandtl number equal to unity. In this case,
model cannot predict the destabilization of the Taylor vo
ces, and therefore cannot account for the onset of cha
behavior.

Although dynamical systems have been mainly form
lated for Newtonian fluids@3,4#, they have recently been ap
plied to non-Newtonian fluids@5–10#. Earlier formulations
examined the thermal convection of viscoelastic fluids@5–7#
and weakly shear-thinning fluids@8# using truncation levels
similar to the Lorenz model@2#. Despite the severe level o
truncation, the low-order dynamical system approach yield
a good agreement with experiments in some cases, suc
the TCF of highly elastic polymeric solutions, often desi
nated as Boger fluids@9,10#.

The interplay between inertia and elasticity in TCF w
first examined using a system of only six degrees of freed
@9#. The influence of higher-order modes, stemming mai
from normal stress effects, was then investigated for pur
elastic fluids without inertia effects@10#. The finite amplitude
elastic overstability~in the absence of inertia!, which is usu-
ally observed in experiment@12#, was accurately predicted
for axisymmetric TVF of the Boger fluids@11# in the narrow-
gap limit. The model predicts, as experiment suggests,
onset of overstability, the growth of oscillation amplitude
flow, and the emergence of higher harmonics in the pow
spectrum as fluid elasticity increases beyond a critical le
Also, good agreement was obtained upon comparison w
the exact results from linear stability analysis@13#.

In this paper, the influence of shear thinning on TVF
examined by adopting a low-order nonlinear dynamical s
tem approach. Although the present study uses the Carr
Bird model @11# for the viscosity dependence on the rate
strain, and thus is primarily concerned with high-molecul
weight fluids, it is also of relevance to shear-thinning flui
in general, even for some simple~monatomic! fluids. Using
the method of nonequilibrium molecular dynamics, seve
authors@14–16# have shown that even a simple fluidlike liq
uid argon can exhibit rheologically complex behavio
Ashurst and Hoover@14# directly integrated the microscopi
equations governing the dynamics of 108 particles. They p
ic
1455 ©2000 The American Physical Society
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dicted that the viscosity of the nonequilibrium fluid syste
decreases as the shear rate increases. At higher shea
ranges, a phase transition was observed by Erpenbeck@15#,
which led the system to undergo a two-dimensional order
Heyes@16# related the rheological behavior of the flow to th
dynamics of molecular interactions to investigate the ca
of shear thinning in simple fluids. Based on the kine
theory of simple dense fluids, Eu@17# and Bhattacharya an
Eu @18# examined the shear-rate and frequency depende
of viscosity for a dense Lennard-Jones fluid, and compa
their results with the molecular dynamics simulation
Evans@19#. Generally, the kinetic theory foundation of co
stitutive models for monatomic dilute~dense! simple fluids,
based on the solution of the generalized Boltzmann equa
clearly reflects the non-Newtonian characteristics of s
fluids @20–22#. The major distinction in constitutive behavio
between these monatomic fluids and polyatomic liquids
pears to be the form of transport coefficients in the limit
zero-shear-rate range@23#. The non-Newtonian character, in
herent to other simple fluids such as rarefied gases, can
be inferred from the kinetic theory of Grad’s 13-mome
method@24#.

The present study isolates the effect of shear thinn
from that of fluid elasticity. The reader is referred to t
review by Larson@25# for a general overview of viscoelasti
instability. To our knowledge, there has been no experim
tal evidence of the existence of~deterministic! chaos for
shear-thinning fluids similar to that for Newtonian fluid
The study, however, is not so much concerned with
emergence of shear-thinning overstability, as it focuses m
on the interplay between inertia and shear thinning, a
therefore on the departure from Newtonian behavior. T
critical Taylor number at the onset of the Taylor vortex c
lular structure is expected to be lower than that for a Ne
tonian fluid as a result of the decrease in viscous effects.
also expects, similar to Newtonian flow@3#, that two steady-
state branches emerge at the onset of a supercritical bifu
tion at a critical Taylor number that depends on shear th
ning. The question arises then as to whether these bran
lose their stability, in turn~for instance, via a Hopf bifurca
tion!, as the Taylor number exceeds another critical value
a result of shear thinning. This is found to be the case for
thermal convection of shear-thinning fluids@8#. Recall that
the Newtonian model@3# cannot predict the destabilizatio
of the Taylor vortex flow.

In the present paper, a level of truncation as in Re
@3,8,9# is adopted in the Fourier representation for the fl
field. Such levels of truncation have also been widely u
for the Navier-Stokes and energy equations@26–28#. Exami-
nation of the influence of additional modes@29–31# indicates
that many of the gross features predicted by low-order m
els are essentially recovered by higher-order models.
choice of a suitable constitutive model is crucial here, sin
the initial objective is to highlight the fundamental ro
shear-dependent viscosity may play in the stability of
flow.

II. PROBLEM FORMULATION

The low-order dynamical system for a Carreau fluid
derived in this section. The general equations for a wea
rate
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shear-thinning fluid are first derived in the narrow-gap lim
The three-dimensional dynamical system is then obtained
ing the Galerkin projection method. The coherence of
model is addressed, and a linear stability analysis is car
out involving an arbitrary number of modes to ensure
reliability of the low-order model.

A. Governing equations in the narrow-gap limit

Consider the flow of an incompressible shear-thinn
fluid between two infinite, coaxial cylinders of inner an
outer radii R1 and R2 , respectively. The inner cylinder i
assumed to rotate at a constant angular velocity,V. The
outer cylinder is assumed to be at rest. In this case, the
is governed by the following conservation of mass and lin
momentum equations for an incompressible fluid:

“•U50, ~1!

r~U,T1U•“U!52“P1“•~mĠ!. ~2!

where a comma denotes partial differentiation. HereU
5(UR ,UQ ,UZ)T is the velocity vector in the cylindrical po
lar coordinates (R,Q,Z), with Z taken along the common
cylinder axis,P is the pressure,m is the shear-rate depende
viscosity, r is the density,T is the time,“ is the three-
dimensional gradient operator, andĠ5“U1(“U)T is the
rate-of-strain tensor. The fluid is assumed to have a ze
shear-rate viscositym0 . In this study, only axisymmetric
flow is considered, so that the dependence onQ is neglected.

The first step in reducing Eqs.~1! and ~2! to the narrow-
gap limit consists of introducing dimensionless coordinat
x and z, in the transverse and axial directions, respective
time t, pressurep, velocity componentsux , uy , anduz , and
viscosityh, as follows:

x5
R2R1

D
, z5

Z

D
, t5

n0

D2 T, p5
D2

rn0
2 P,

ux5
D

n0
UR , uy5

1

R1V
UQ , uz5

D

n0
UZ , h5

m

m0
,

~3!

where D5R22R1 is the gapwidth, andn05m0 /r is the
zero-shear-rate kinematic viscosity.

In this study, the flow is taken as the superposition of
base flow and a perturbation from the base flow. Unl
Newtonian flow, Eq.~2! can admit a multiplicity of steady-
state solutions because of the nonlinearity resulting fr
shear thinning. In the narrow-gap limit~see below!, the
steady pressure,p0; and transverse velocity component,uy

0,
are governed by

p,x
05Ta~uy

0!2,
d

dx FhS duy
0

dx D duy
0

dx G50, ~4!

where the dependence of the viscosity,h, on the shear rate is
shown implicitly. Here Ta is the Taylor number, which wi
be introduced shortly. While the pressure is uniquely giv
in terms of the velocity, there may be more than one solut
for the latter. The purely azimuthal or circular Couette flo
~CCF! is only one possible solution. In other words, setti
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the shear rate to constant after integrating the second e
tion in Eq. ~4! is one among many possibilities. Other po
sibilities include a shear rate that isy dependent but such tha
the product of viscosity and shear rate remains constant.
anticipated that the CCF solution loses its stability once
Taylor number exceeds a critical level. However, the qu
tion arises, given the multiplicity of the steady-state soluti
as to whether the CCF is the most stable solution in
precritical range of Taylor numbers. This question will on
be addressed briefly below. In this work, the CCF is the o
base flow whose stability is examined. In the narrow-g
limit, the corresponding velocity components (ux

0,uy
0,uz

0)T

and pressurep0, are given explicitly as

ux
05uz

050, uy
0512x, p,x

05Ta~12x!2, ~5!

in which Ta is defined in terms of the Reynolds number, R
and the gap-to-radius ratio,«:

Ta5Re2 «; Re5
VR1D

n0
, «5

D

R1
, ~6!

It is important to observe that the CCF in Eq.~5! is indepen-
dent of the form of the viscosity since the shear rate is c
stant.

In this work, the Carreau-Bird model is adopted, mo
particularly for weakly shear-thinning fluids~with small time
constant!. A major advantage of this model over other mo
els, such as the power-law model, is that Newton’s law
viscosity@11# is recovered in the limit of zero shear rate@3#.
The general Carreau-Bird viscosity model can be written
dimensionless form:

h~ġ!5s1~12s!@11~Deġ !2#~n21!/2, ~7!

wheren is the ‘‘power-law exponent,’’ which is less than
for shear-thinning fluids,ġ is the magnitude of the dimen
sionless rate-of-strain tensorġ5(D/R1V)Ġ, ands is the ra-
tio of the zero to infinite shear-rate viscosities@11#. Here,
De5lR1V/D is the ‘‘Deborah number’’ for the problem,l
being the time constant. More explicitly,ġ is expressed in
terms of the components of the rate-of-strain tensor,ġ, as
@11#

ġ5Aġxy
2 1ġxz

2 1ġyz
2 1

«

2 Ta
~ ġxx

2 1ġyy
2 1ġzz

2 !, ~8!

where it is recalled thatġ i j 5ui , j1uj ,i , with i , j 5x,y,z.
Note that in the present problem,ġyy

2 50 since the flow is
axisymmetric and the gap between the two cylinders is n
row. In this study, it is assumed that Ta5O(1), sothat the
terms ofO(«/Ta) in Eq.~8! can be neglected. If De is smal
thenh may be reduced to

h~ġ!511~12s!S n21

2 D ~Deġ !2511aġ2, ~9!

where higher-order terms in De have been neglected, ana
5(12s)(n21/2)De2.

Hereafter in this paper, the parametera is used as a mea
sure of non-Newtonian effect, and is assumed to be sm
enough for approximation~8! to hold. Thus, in the limita
ua-
-
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→0, one recovers the expression for the Newtonian visc
ity. It should be noted thata is negative~positive! for shear-
thinning ~thickening! fluids. It is thus assumeduau!1. Note
that expression~9! also corresponds to second-order flui
@11#.

The deviation from the CCF,ux8 , uy8, and uz8 , for the
velocity components,p8 for the pressure, andh8 for the
viscosity, are defined as

ux85ux2ux
0, uy85uy2uy

0, uz85uz2uz
0,

p85p2p0, h85h2h0. ~10!

The explicit expressions forh0 andh8 will be given shortly.
Using Eqs.~3!, ~5!, ~9!, and neglecting terms ofO(«), Eqs.
~1! and ~2! reduce to the following form in the narrow-ga
limit:

ux,x1uz,z50 ~11a!

ux,t1uxux,x1uzux,z2ty
222ty~12x!

52p,x1~h01h!~ux,xx1ux,zz!

12h ,xux,x1h ,z~ux,z1uz,x!, ~11b!

uy,t1uxuy,x1uzuy,z5ux1~h0h!~uy,xx1uy,zz!1h ,zuy,z

1h ,x~uy,x21!, ~11c!

uz,t1uxuz,x1uzuz,z52p,z1~h01h!~uz,xx1uz,zz!

12h ,zuz,z1h ,x1~ux,z1uz,x!,

~11d!

where, for simplicity, the primes are dropped. Finally,
substituting forġ, we obtain the expressions forh0 andh ~or
h8).

h0511a, h5a~uy,x
2 1uy,z

2 22uy,x!. ~12!

The solution of Eqs.~11! is considered next using th
method of Galerkin projection.

B. Galerkin projection and the dynamical system

The Galerkin projection method consists of expanding
velocity and pressure in terms of orthogonal functions ox
andz, and project Eqs.~11! onto each mode of expansion t
generate a set of ordinary differential equation that gov
the time-dependent expansion coefficients. The type of
thogonal functions depends on the geometry and bound
conditions. A periodic solution is taken along the cylind
axis. For simplicity, the rigid-free boundary conditions a
assumed. The fluid is assumed to adhere to the cylinder
the azimuthal direction, and it is assumed to slip along thz
direction.

We follow Kuhlmann and co-workers@3,4# to obtain the
flow departure by solving Eqs.~11! and introducing infinite
Fourier series in thex and thez directions, with the series
coefficients depending only on time. The general solution
the axisymmetric TVF can be decomposed into sine and
sine normal modes as
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TABLE I. Influence of higher-order modes on the values of the critical Taylor number,Tac
m and corre-

sponding wave number,km . Herea521.

Newtonian fluid Shear-thinning fluid

Number of modes km Tac
m km Tac

m

1 2.221 40 657.511 36 2.127 90 452.557 79
2 2.227 20 654.256 57 2.130 60 451.554 32
3 2.227 20 654.256 50 2.130 60 451.554 31
4 2.227 20 654.256 09 2.130 60 451.554 19
5 2.227 20 654.256 09 2.130 60 451.554 19
10 2.227 20 654.256 09 2.130 60 451.554 19
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ux~x,z,t !5 (
n51

`

(
m51

`

ûnm~ t !sinnpx cosmkz, ~13a!

uy~x,z,t !5 (
n51

` F (
m51

`

n̂nm~ t !sinnpx cosmkz

1 n̂n0~ t !sinnpxG , ~13b!

uz~x,z,t !5 (
n51

`

(
m51

`

ŵnm~ t !cosnpx sinmkz, ~13c!

p8~x,z,t !5 (
n51

`

(
m51

`

p̂nm~ t !cosnpx cosmkz, ~13d!

where ûnm(t), n̂nm(t), ŵnm(t), and p̂nm(t) are time-
dependent coefficients andk is the dimensionless wave num
ber in thez direction. The first step in the Galerkin projectio
method consists of substituting Eqs.~13! into Eqs. ~11!.
Equations~11! are then multiplied by the appropriate mod
and are integrated overxP@0,1# andzP@0,p/k#.

The basic model, which involves only dominant mod
consists of the fundamental modesû11(t), n̂11(t), ŵ11(t),
and p̂11(t), which are coupled nonlinearly byn̂10(t) and
n̂20(t). The justification for such a severe level of truncati
is based on the results from linear stability analysis~see be-
low!. Comparison between exact and approximate values
the critical Taylor and wave numbers leads to excell
agreement.

After eliminating the pressure coefficient, the resulting
of nonlinear and coupled ordinary differential equation
which govern the time-dependent expansion coefficients,
come

dû11

dt
5tk2Tan̂112t21û111Ta

16tk2

3p
n̂11n̂101a~A1n̂11

2 û11

1A2n̂10
2 û111A3n̂20

2 û111A4n̂20û111A5û11!, ~14a!

dn̂11

dt
5pû11n̂201û112t21n̂111a~B1n̂11

3 1B2n̂10
2 n̂11

1B3n̂20
2 û111B4n̂20n̂111B5n̂11!, ~14b!
,

or
t

t
,
e-

dn̂20

dt
52

p

2
û11n̂1124p2n̂201a~C1n̂20

3 1C2n̂11
2 n̂20

1C3n̂10
2 n̂201C4n̂11

2 1C5n̂10
2 1C6n̂20!, ~14c!

dn̂10

dt
52p2n̂101a~D1n̂10

3 1D2n̂11
2 n̂101D3n̂20

2 n̂10

1D4n̂20n̂101D5n̂10!, ~14d!

where A1 ,...,A5 , B1 ,...,B5 , C1 ,...,C6 , D1 ,...,D5 , depend
only on k and are given in Appendix A. Heret5(1/p2

1k2). Note that we made use of the relationŵ11(t)
52(p/k)û11(t), which results from the continuity equation

In order to justify the restricted number of modes in thex
direction, the minimum critical Taylor number, Tac

m , and
corresponding wave number,km , are first computed using a
arbitrary number of modes,N. The details of the derivation
are given in Appendix B. The linear stability analysis of Eq
~11! is carried out using the general solution~13! with N
51. The influence of the number of eigenmodes in thex
direction is reflected in Table I for both a Newtonian flu
and a shear-thinning fluid witha520.1. The table indicates
that the higher-order modes cause corrections to the first
proximation that are of order 1022 for both fluids. The com-
parison thus shows that the severe truncation level adopte
the current study is not unreasonable.

The set of Eqs.~14! is reduced to a three-dimension
system if we note thatn̂10(t) can be decoupled from th
remaining coefficients. This is demonstrated by first rew
ing Eq. ~14d! compactly as

dn̂10

dt
5@2p21aF~ n̂10,û11,n̂11,n̂20!#n̂10. ~15!

Sincea is considered to be small (20.1,a,0) andF is
O(1), theterm 2p21aF is O(p2) and the contribution of
aF is negligible. This means thatn̂10(t) decays exponen
tially with time, with uninteresting transients, similarly to th
Newtonian case (a50). Therefore, with the following scal
ing for the most prominent modes

u5
pt

&
û11~ t !, n5

p

&
n̂11~ t !, w52pn̂20~ t !, ~16!

we finally arrive at the following three-dimensional dynam
cal system:
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u̇5rn2u2
a

2 H F ~42b!~b22!1
9

b
22Gun212~22b!uw2

2~b22!22~b22!2uw12uJ , ~17a!

ṅ52uw1u2n2
a

2 H F9

b
1b24Gn312~b12!nw2

22~b22!nw1~b12!nJ , ~17b!

ẇ5un2bw2
a

2
@6bw312~b12!n2w1~b12!n216bw#,

~17c!

where a dot denotes total differentiation with respect to tim
andb54p2t. For convenience here, we have introduced
reduced Taylor number,r, which will be used later as a con
trol parameter for the stability analysis:

r 5Tat3k2. ~18!

The analysis of the solution of Eqs.~17! is our main objec-
tive. In the limit a→0, Eqs.~17! reduce to the Newtonian
form @3#, which corresponds to the Lorentz system with t
Prandtl number set equal to 1@32#. Compared to the New
tonian system, Eqs.~17! are highly nonlinear. In addition to
the usual nonlinearities stemming from inertia effects, th
are nonlinearities stemming from shear-thinning effects.
nally, we note that Eqs.~17! are invariant under the symme
try operation (u,v,w)→(2u,2n,w). This is consistent
with the physical situation of shear-thinning fluids and t
orientation of the flow within the vortex structure.

C. Consistence of the low-order model

As in the case of the Newtonian system, it should
ensured that the introduction of the severe truncation has
caused a singularity in the lower-order model~17!, and that
the model remains physically consistent. To this end, we
a Lyapunov function for the model and show that the so
tion of Eqs.~17! remains bounded@33#. In other words, we
must show that the three-dimensional field~u, n, w! is every-
where directed toward the origin on a surface surround
the origin, and is located at a large distance from it. L
F(u,n,w)50 be the equation of such a surface. Thus,
must have, everywhere in phase space:

DF5u̇F ,u1 ṅF ,n1ẇF ,w,0. ~19!

There is a wide range of possibilities for the choice of t
surfaceF. The following sphere turned out to be a suitab
choice:

F~u,n,w!5
1

2
~u21n21w2!2A, ~20!

with A.0 and arbitrarily large. Substituting this expressi
for F into Eq. ~19!, and using Eqs.~17!, to obtain

DF52u22n22bw21~r 11!un1aG~u,n,w!, ~21!
,
e

e
i-

e
ot

e
-

g
t
e

whereG(u,n,w) is an explicit polynomial function ofu, n,
and w. It is evident that for values ofuau!1, terms multi-
plied bya in Eq. ~21! are dominated by the quadratic term
and therefore,DF remains negative. In this case, no traje
tory originating from a point with a finite distance from th
origin can go off to infinity. Thus, the basin of attractio
around the origin becomes larger for smaller values ofa.

We now turn our attention to the coherence of the mo
pertaining to the volume contraction. Consistently with t
original equation~1!, Eqs.~17! must be dissipative. Thus,
volume,V(t), in phase space must contract. For volume c
traction to be insured, the velocity field must have a const
negative divergence everywhere or

1

V~ t !

dV~ t !

dt
5

]u̇

]u
1

]ṅ

]n
1

]ẇ

]w
5222b1aH~u,n,c!.

~22!

Here H is a polynomial inu, n, andw, which is not given
explicitly. From the expression above, we note that foruau
!1, V21dV/dt becomes approximately equal to a consta
2(21b), i.e., the volume decreases monotonically w
time.

III. BIFURCATION AND STABILITY ANALYSIS

In this section, we obtain the steady-state solution~s! of
Eqs. ~17!. Some of these solution branches correspond
purely circular ~Couette! flow, and other branches corre
spond to toroidal~Taylor-vortex! flow. The stability of both
the CCF and TVF is examined by exploring some of t
fundamental differences between Newtonian and sh
thinning fluids. In comparison with the Newtonian syste
the presence of the nonlinear terms resulting from shear t
ning leads to additional complexity from both the mat
ematical and physical points of view. Expectedly, for ve
small values ofa, similar behavior is obtained for Newton
ian and non-Newtonian fluids.

A. Stability of the base flow

The stability analysis for a shear-thinning fluid is carri
out around the CCF~origin in phase space!. The analysis is
based on the linearization of Eqs.~17!, and is similar to the
analysis based on the Newtonian equations@3#. Linear sta-
bility analysis around the origin leads to three characteri
roots, one rootl152b(113a), turns out to be independen
of r, and the other two roots are governed by the followi
equation:

l21F2~11a!2
ab

2 Gl1~r c2r !50. ~23!

Thus, l1 is positive fora.21/3. With the assumption o
fluid being weakly shear thinning,a cannot reach this value
The other two roots,l2 andl3 , are always real. One of th
roots,l2 , is always negative, andl3 becomes positive for
r .r c , with r c given by

r c5~11a!21~11a!ab/2. ~24!
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Note that for a Newtonian fluid,r c51. The second term in
this expression contributes to the decrease ofr c similarly to
the first term, asa assumes smaller values~note thata
,0). The effect of the second term, however, is not as s
nificant as that of the first one. The dependence ofr c on the
wave numberk is depicted in Fig. 1 for typical values ofa.
It is evident from the figure that for smallera values, in the
range 0,k,4, r c increases noticeably, while fork.4 this
increase is insignificant. This explains why, for a givena in
the rangek.4, the stability analysis around the origin give
almost the same results regardless of value ofk. However, as
a increases,r c becomes less sensitive to changes ink.

It is instructive to explore the variations of the critic
Taylor number Tac5r c /t3k2 as a function ofk. For a given
a value, the minimum critical Taylor number, Tac

m , occurs at
a wave number km5pA(a11)/(a12). For aP
@20.1,0.0#, km decreases monotonically as with shear th
ning at most only 3% from the critical wave number for t
Newtonian case (p/&) @3#. Figure 2 shows the behavior o
the critical Taylor number as a function of the wave numb
for typical values ofa. For all a values, Tac decreases like

FIG. 1. Influence of shear thinning on the onset of Taylor vor
flow. Critical value r 5r c at the onset of supercritical bifurcatio
~Taylor vortex flow! as function ofk for 20.1<a<0.

FIG. 2. Influence of shear thinning on marginal stability curv
Variation of the critical Taylor number, Tac , as function ofk for
20.1<a<0.
-

-

r

1/k2 neark50, reaches a minimum, and then increases l
k2 for large k’s. The value ofkm tends to increase asa
decreases. On the other hand, this minimum becomes
pronounced with increasing shear thinning of the fluid,
sulting in a wider range of Taylor vortices nearTac

m . It is
inferred from Fig. 2 that shear thinning tends to precipita
the onset of axisymmetric Taylor vortices at any value of
wave number in the axial direction. As shear thinning
creases, the critical Taylor number reaches a zero value@a
521 in Eq. ~24!#. In this case, we formally recover th
Rayleigh stability picture for an inviscid fluid. The recove
of the limit of zero critical Taylor number must of course b
interpreted with caution as the limita521 is not within the
range of validity of the present theory.

B. Steady-state solutions and bifurcation diagrams

As in the Newtonian equations, a trivial solution of Eq
~17! exists, which corresponds to the CCF or the origin
phase space:

us~r ,a!5ns~r ,a!5ws~r ,a!50. ~25!

In the limit a→0, the nontrivial steady-state solutio
branches for a Newtonian fluid are given by

us
N~r !56Ab~r 21!, ns

N~r !56
Ab~r 21!

r
,

ws
N~r !5

r 21

r
. ~26!

For shear-thinning fluids, similar nontrivial, steady-state
lution branches exist, but they cannot be obtained ana
cally. These two sets of branches will be denoted byC1 and
C2 . In order to determine the steady-state branches ofu, n,
and w in Eqs. ~17!, a modified Newton-Raphson method
used~IMSL-DNEQNJ!, with the Jacobian of the system be
ing provided. However, despite the robustness of
Newton-Raphson method, and the fact that the nonlinear
involved in the algebraic equations are only polynomials,
bifurcation branches for variousa values were found to be
difficult to generate. The steady-state solution was found
be extremely sensitive to the initial guess. The guess ha
be provided accurately enough for the method to conve
This difficulty was circumvented by transforming the alg
braic equations forus(r ,a), ns(r ,a), andws(r ,a) into a set
of ordinary differential equations, withr being the indepen-
dent variable. The set of three algebraic equations are
course, obtained by setting the time derivative in Eqs.~17!
equal to zero. Three first order differential equations are
tained by differentiating the algebraic equations with resp
to r. This strategy is now illustrated in the case of a Ne
tonian fluid, although an analytical solution exists in th
case. The algebraic equations that govern the Newton
steady-state flow are

rns
N2us

N50, 2us
Nws

N1us
N2ns

N50, us
Nns

N2bws
N50.

~27!

If the solution to this set of equations is sought for a giver
value, then the steady-state solution can be considered a

x

.
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dependent variable, andr becomes the independent variab
Then the differential equations are obtained by different
ing the system of three equations above with respect tor, to
give

dus
N

dr
5

r bus
Nns

N1b~ws
N21!cns

N

b~r 212rws
N!2rus

Nns
N2us

N2 1ns
N , ~28a!

dns
N

dr
5

bus
Nns

N1b~ws
N21!cns

N

b~r 212rws
N!2rus

Nns
N2us

N2 , ~28b!

dws
N

dr
5

@us
Nns

N1b~ws
N21!#~rns

N1us
N!ns

N

r 212rws
N2b~rns

N1us
N!us

N 1
ns

N2

b
.

~28c!

Thus, for a shear-thinning fluid, a solution branch is soug
for a givena, by first seeking a solution point provided b
the Newton-Raphson method. Then using this point as
‘‘initial’’ value, the solution branch is generated using
sixth-order Runge-Kutta algorithm~IMSL-DIVERK !. Note
that the starting point~obtained using the Newton-Raphso
method! at r 5r ini , is usually difficult to obtain near the
critical point, and it is typically evaluated far ahead, f
r ini.r c . The nontrivial solution branch is then generat
~using the Runge-Kutta method! by increasingr, for the
ranger .r ini , and then by decreasingr for the ranger c,r
,r ini . However, it is important to note that Eqs.~28! are
also difficult to solve near the critical point as they beco
singular atr 5r c .

The steady-state branchesus , ns , and ws for aP
@20.1,0.0# and k56 are plotted as functions ofr, and are
shown in Figs. 3, 4, and 5, respectively. This value of
wave number is chosen for clarity~see below!. It can be seen
from Fig. 3 that, in general, the origin~in phase space! re-
mains the only steady-state solution of Eqs.~17! until r
reaches a critical value,r c , which is equal to one for the
Newtonian case@see Eqs.~26!#. At this point, two additional
fixed branches,C1 andC2 , emerge, which correspond to th
onset of Taylor vortices. More specifically, a supercritic
bifurcation is observed at the critical point. Since each bif

FIG. 3. Influence of shear thinning on TVF. Bifurcation di
grams foru5us as function ofr for 20.1<a<0 (k56). Note that
only one branch is shown (C1 and notC2) because of symmetry.
.
t-

t,

n

e

e

l
-

cation diagram is symmetric, only one set of soluti
branches (C1) is shown. Asa decreases from zero,r c takes
on lower values. Shear thinning tends to accelerate the fl
in the ~x,z! plane near the onset of TVF. For the higher ran
of r values, shear thinning tends to slow the flow dow
Regarding the~deviation! flow in the azimuthal direction,
similar observations apply tons(r ,a), which is related to
n̂11(t) ~Fig. 4!. However, ws(r ,a), which is related to
n̂20(t), increases with both inertia and shear thinning mon
tonically ~Fig. 5!.

Two additional nontrivial steady-state solution branch
were also identified, which do not exist for a Newtonia
fluid. These solutions are independent ofr, and exist only if
21/6,a,0 for a shear-thinning fluid. The solutio
branches are given byus(r ,a)5ns(r ,a)50 and ws(a)5
6@2(113a)/3a#1/2. They represent approximations t
nonlinear purely swirling flows, in addition to the CCF
Whether these flow profiles have any physical significanc
difficult to assert, especially for purely shear-thinning fluid
For some flows that obey nonaffine viscoelastic constitut

FIG. 4. Influence of shear thinning on TVF. Bifurcation dia
grams forn5ns as function ofr for 20.1<a<0 (k56).

FIG. 5. Influence of shear thinning on TVF. Bifurcation dia
grams forw5ws as function ofr for 20.1<a<0 (k56). Note the
two additional steady-state branchesws(a)56@2(113a)/3a#1/2

are not shown.
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equations~also exhibiting shear-thinning effects!, similar
nonlinear~Couette! flow profiles are obtained@34#. The two
additional branches are an example of the solution multip
ity of Eq. ~4!. However, they can also be an artifact resulti
from the severe truncation used, but may be more or
stable than the CCF. The analysis of stability of these t
branches will not be addressed in the current paper.

C. Stability of the Taylor vortex flow

Consider next the stability of the steady-state branchesC1
andC2 as r is increased beyondr c . For a Newtonian fluid,
linearization of Eqs.~17! around the steady-state branch
~26! leads to the following characteristic equation:

l31~b12!l21b~r 11!l12b~r 21!50. ~29!

The roots of Eq.~29! have a real part that remains negati
for any value ofr. Thus, for r .r c , the three-dimensiona
Newtonian model cannot predict any destabilization of
TVF.

Linear stability analysis around theC1 and C2 branches
for a shear-thinning fluid leads to a cubic characteristic eq
tion similar to Eq.~29!. However, the coefficients in this cas
are not explicitly expressible in terms of the steady-state
lutions; these latter not being available analytically. In th
case, the coefficients of thel terms in the characteristi
equation are determined numerically. Computations sh
that these branches are linearly stable forr .r c nearr c . In a
typical case ofa520.075 andk56, the linear stability is
lost to an inverse Hopf bifurcation atr hl534.8. At this point,
only an aperiodic solution exists in the form of a stran
attractor@2#. This situation holds as long asa remains close
to zero. The bifurcation picture is therefore shown schem
cally in Fig. 6. At some pointr h2512.5, the inverse Hop
bifurcation branches intersect ther axis. Here, in the range
r P@1,12.5#, C1 and C2 are globally stable; for any initia
perturbation, the solution converges to these branches~see
Fig. 6!. In the ranger P@12.5,34.8#, the solutions will con-
verge toC1 andC2 only if the initial perturbation is not too
large; the branches are locally stable. In this range, if
perturbation is too large, a chaotic solution results. Thus,r h2
is determined numerically, and it corresponds to the po
whereC1 and C2 lose their global~to only local! stability.
Note that the dashed lines illustrating the amplitude of
inverse bifurcation in the Fig. 6 are only sketched and
accurately determined. Beyondr 534.8, stability is not
achieved although there is some order within the chaos
inverse period doubling and intermittency.

Variation of r h1 vs k for the rangeaP@20.07,20.1# is
depicted in Fig. 7. It can be observed thatr h1 for 20.07
,a,20.08 is very sensitive to the choice ofa. In this
range,r h1 increases sharply withk. At abouta520.075,r h1
changes curvature and levels off at some higherk value. This
trend continues until no substantial change for the casea5
20.1 is detected. Thus, the TVF appears to be always
stable for pronounced shear thinning.

IV. NONLINEAR DYNAMICAL BEHAVIOR

While the analysis above determines the conditions
instability of the steady-state branches, the full nonlinear
-
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havior can only be understood when the numerical solut
of Eqs. ~17! is obtained. The time-dependent evolution
flow is carried out using a sixth-order Runge-Kutta sche
~IMSL-DIVERK !. The solution depends on the initial cond
tions assumed. It is found that, regardless of these condit
the long-term behavior will be essentially the same af
transients die out, indicating that the solution branch
unique, at least for the range of parameters covered.

The present calculations are conducted for a fluid w
a520.075 andk56, corresponding to a typical Carreau
Bird fluid. The choice of these parameters is not entir
arbitrary. This choice turns out to be appropriate as inter
ing dynamics are observed whenr is varied. In particular,

FIG. 6. Schematic illustration giving the overall stability an
bifurcation picture for a shear-thinning fluid fora520.075 andk
56. The supercritical pitchfork bifurcation~with branchesC1 and
C2) emerges atr c50.855. The subcritical Hopf bifurcation
emerges atr h1534.8, and intersects ther axis atr h2512.5. Stable
and unstable branches are drawn using solid and dashed line
spectively. Note that the notations used in the figure and fig
layout are the same as those corresponding to the Lorenz syste
Ref. @2#.

FIG. 7. Influence of shear thinning on the destabilization of
Taylor vortex flow. Critical pointr 5r h1 vs k at the onset of the
subcritical Hopf bifurcation for 20.1<a<20.07. Note that
lima→0 r h1(r ,a)→`.
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and on the basis of Fig. 2, a more appropriate value for
wave number would be 2.2, as it is roughly at this value t
the first instability is likely to be observed. However, th
dynamics based onk52.2 is similar but more difficult to
clearly observe than that based onk56. In what follows, the
influence of inertia for a shear-thinning fluid is examined
varying r. We choose to represent the various solutions
time signatures, phase plots, and/or power spectra depen
on which of these representations is most insightful.

A. Onset of early chaos

Consider the range ofr values around the onset of th
supercritical and the Hopf bifurcations. Stability analys
shows that, fora520.075 andk56, there is a loss of sta
bility of the CCF at r c50.855 @see Fig. 3 and Eq.~26!#.
Figure 8 shows the time signature,u(t), and the phase tra
jectory in the~u,n! plane forr 54. The flow exhibits an os-
cillatory decay~from any arbitrary initial point! toward the
fixed point ~1.366, 0.304! in the ~u,n! phase plane. Asr in-
creases, the flow remains essentially the same, with the
plitude of the steady-state solution becoming larger. At so
point r 5r 0 ~in this caser 056), however, the flow under
goes a homoclinic bifurcation, as shown in Fig. 9, simila
to that predicted by the Lorenz equations@2#. In this case
also, the flow decays to a fixed point~21.717,20.254!. This
is a global bifurcation that cannot be detected through lo
stability analysis around the fixed point. What happens ar
exceedsr 0 is that each unstable manifold of the origin mov
from the basin of attraction of one fixed point,C1 or C2 , to
the basin of the other fixed point~for more detail on ho-
moclinic bifurcation, refer to Ref.@35#!.

At r 5r k1534.8, linear stability analysis predicts the e
istence of a Hopf bifurcation, with bothC1 and C2 losing

FIG. 8. Time decaying flow. Phase trajectory in the~u,n! plane
for r 54, a520.075, andk56.

FIG. 9. Homoclinic bifurcation. Phase trajectory in the~u,n!
plane forr 56; a520.075, andk56.
e
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their stability as shown in Fig. 6. At this point, the stea
Taylor vortices lose their stability to adopt an oscillato
cellular structure. Asr increases further, the flow become
fully chaotic as can be seen from Fig. 10 forr 535.2. From
the time signature@Fig. 10~a!#, the phase portrait@Fig. 10~b!#
and the power spectrum@Fig. 10~c!#, the transition to chaos
in this case appears to be similar to that leading to the Lor
attractor. The transition does not follow any of the thr
well-established routes to chaos, namely, via period d
bling, quasiperiodicity, or intermittency@2–4#. Finally, it is
worth mentioning that~i! the exchange of stability betwee
the CCF and the TVF via a supercritical bifurcation asr
exceedsr c , ~ii ! the emergence of a homoclinic bifurcatio
~iii ! the destabilization of the~steady! TVF through a Hopf
bifurcation, and~iv! the onset of chaos, constitute a sequen
of behaviors typically predicted by low-order nonlinear d
namical systems@2#. The effect of shear thinning is to lowe
the Taylor number for the onset of the bifurcations. The d
ference in dynamics will, however, become more evident
inertia is increased.

B. Flow regularization

At r 535.9, the flow begins to show a more coherent a
even periodic behavior@see Figs. 11~a! and 11~b!#. The time
signature is not shown, as it does not display any sign
cantly new dynamics relative to Fig. 10~a!. There is consid-
erable thinning of the bandwidth of the attractor in pha
space. The power spectrum in Fig. 11~b! shows a dominant
frequency,f 050.136, which begins to emerge more clea

FIG. 10. Onset of aperiodic or chaotic motion forr 535.2, a
520.075, andk56. Time signatureu(t) ~a!, corresponding phase
trajectory in the~u,n! plane~b!, and power spectrum~c!.



n
r-

a

gh
or
in

th
y

l
,
it
ly

r-

of

en-
-
rly
y-
an-
for
nev-

on
all

1464 PRE 61NARIMAN ASHRAFI AND ROGER E. KHAYAT
than in Fig. 10~c!. The spectrum shows bands of subharmo
ics of order 3~multiples of f 0/3). The presence of subha
monics is also reflected in the phase portrait in Fig. 11~a!.

The periodicity becomes more apparent forr 536, as
shown in Fig. 12. The flow exhibits a period-2 behavior
illustrated by the phase portrait of Fig. 12~a!. In the Fourier
spectrum a weak subharmonic, withf 0/2, is identified. Asr
is increased, complete periodic behavior is reached, rou
at r 537, with the temporal behavior and phase traject
exhibiting distortion due to nonlinear effects as shown
Fig. 13. In this case, there is no subharmonic. Merely,
even harmonics are present, which change the symmetr
u(t). The basic periodic motion is shown in Fig. 14 forr
539. The spectrum in Fig. 14~b! contains the fundamenta
and its odd harmonics (3f 0,5f 0 ,...). As r increases further
the motion remains periodic with the distortion of the lim
cycle slowly disappearing, and giving way to complete
symmetric periodic orbits atr 539.3. This periodicity is,

FIG. 11. Phase trajectory in the~u,n! plane~a!, and power spec-
trum for u(t) ~b!, for r 535.9,a520.075, andk56.

FIG. 12. Period-2 motion atr 536, a520.075, andk56.
Phase trajectory in the~u,n! plane~a!, and power spectrum foru(t)
~b!.
-
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however, disrupted asr is increased further, leading to inte
mittent motion as discussed next.

C. Chaos via intermittency

The intermittency scenario is one of the typical routes
transition from a periodic state to chaos@2,36#. Period dou-
bling, as discussed earlier, is another possible route. In g
eral, a signal is called intermittent if it is subject to infre
quent variations of large amplitude. Here, we are particula
interested in temporal intermittency, which can exist in d
namical systems with a small number of modes during tr
sition from periodic to chaotic motion. The mechanisms
this phenomena were first proposed by Pomeau and Man
ille @37#.

For a value ofr less than 39.3, the dynamical system~17!
has a stable limit cycle as shown in Fig. 14; the soluti
oscillates in a regular fashion and is stable against sm

FIG. 13. Period-1 motion and even harmonics atr 537, a5
20.075, andk56. Phase trajectory in the~u,n! plane~a!, and power
spectrum foru(t) ~b!.

FIG. 14. Period-1 motion atr 539, a520.075, andk56.
Phase trajectory in the~u,n! plane~a!, and power spectrum foru(t)
~b!.
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perturbations. Whenr slightly exceedsr i ~the intermittency
threshold!, we begin to observe an intermittent dynamic
behavior, with the intermittency growing asr increases. The
resulting sequence of flows is shown in Fig. 15 forr
P@39.302,39.350#. It should be noted that the entire proce
of intermittency occurs in this narrow range ofr values. The
periodic behavior just before the onset of intermittency
shown in Fig. 15~a!, for r 5r i539.302. Intermittent flow be-
comes apparent atr 539.303 as shown in Fig. 15~b!. The
time signature in the figure consists of oscillations that
pear regular and that resemble the stable oscillatory beha
for r<r i . But now, the oscillations are interrupted from tim
to time by abnormal fluctuations or bursts, whose amplitu
and direction are approximately the same from one fluct
tion to another, and that depend onr. This is also confirmed
from Fig. 15~c! at r 539.304, which shows that the duratio
of periodic behavior has decreased. Figures 15~b! and 15~c!
show clearly that it is neither the amplitude nor the durat
of the exceptional fluctuations that tend to increase asr in-
creases fromr i , but only their average frequency. The
erratic fluctuations have a well-defined average duration
terminate as the flow returns to the periodic oscillatory
havior. Asr is further increased, the periodic flow disappea
almost completely, and the motion becomes chaotic
shown in Fig. 15~d! for r 539.35.

V. CONCLUDING REMARKS

Although results based on low-order dynamical syste
are generally interesting as they exhibit complex nonlin

FIG. 15. Temporal behavior showing the transition to and on
of chaos via intermittency route.~a! Periodic flow atr 539.302, just
before intermittency sets in.~b!, ~c! Intermittent flow atr 539.303
and r 539.304, respectively.~d! Chaos atr 539.35.
l

s

-
ior

e
-

n

d
-
s
s

s
r

flow behavior, there is always the compelling question as
their practical significance and physical relevance. To
knowledge, there is no experiment that explores directly
influence of shear thinning on the stability of TCF. In pra
tice, it is difficult to isolate the effects of shear thinning fro
those of elasticity during the flow of a polymeric flui
@12,25,38,39#. However, since the present formulation
based on a truncation level similar to the one that led pre
ously to good agreement with experiment for the TCF
non-shear-thinning viscoelastic fluids@10,40#, the present re-
sults may be of practical significance. The proposed theor
not expected to be valid in the far postcritical range of Tay
numbers. It is expected to hold in the linear range, and
far beyond the critical point, i.e., after the toroidal vorte
flow emerges. However, as in any approximate theory, i
often useful to probe beyond the range of validity of t
model in order to stimulate future experimental and theo
ical studies. More importantly, the reported formulation a
results clearly show the emergence of interesting dynam
that are completely absent in the Taylor-Couette flow
Newtonian fluids, and which are solely shear-thinning
duced. These dynamics are often exhibited by similar mod
in the thermal convection of Newtonian fluids. Thus, t
approximations and assumptions made in the present for
lation are expected to only shed light on the fundamental r
that shear thinning plays relative to Newtonian flows.

In conclusion, the effect of shear thinning on the stabil
of rotating flow in the narrow-gap geometry is investigate
A low-order dynamical system is derived that generaliz
Kuhlmann’s system@3# that is recovered in the limit of a
Newtonian fluid. The goal of the present study is to exam
the impact of shear thinning on finite amplitude Taylor vo
tex flow. The severity of truncation involved renders t
present model quite crude but allows the examination of
nonlinear range where a more realistic~numerical! approach
would face difficulties. The present study elucidates the n
dynamics that shear thinning generates in the nonlinear
gime. From a mathematical point of view, the presence
shear thinning leads to additional cubic nonlinearities in
dynamical system, which in turn give rise to a Hopf bifurc
tion otherwise nonexistent in the case of a Newtonian flu
Numerical calculations based on the current formulat
show that shear thinning tends to precipitate the onse
Taylor vortices and chaos at higher Taylor numbers. T
current model also predicts the complete destabilization
the Couette flow in the limit of high shear thinning, in a
cordance with the Rayleigh stability picture for inviscid flu
ids @41–43#.
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APPENDIX A

The constants in Eqs.~14! are given in this Appendix:

A152
p6143p4k2213p2k419k6

16~p21k2!
,

t
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A252
p2~p417p2k21k4!

2~p21k2!
,

A352p2~p22k2!, A452
2p~p426p2k21k4!

~p21k2!
,

A552~p21k2!, ~A1!

B152
9p412p2k219k4

16
, B25

2p2~2p21k2!

2
,

B3522p2~3p21k2!, B4522p~3p21k2!,

B552~3p21k2!, ~A2!

C15212p4, C252p2~3p21k2!, C3522p4,

C452
p2~3p21k2!

2
, C55

p3

2
, C65212p2,

~A3!

D152
3p4

4
, D252

p2~25p213k2!

8
, D3526p4,

D4510p3, D5523p2. ~A4!

APPENDIX B

In this Appendix, the convergence of the proposed form
lation is assessed. A linear stability analysis of Eqs.~11! is
carried out using an arbitrary number of modes in the tra
verse direction~x!. Equations~11! are first linearized around
the origin. They reduce to the following equations:

ux,x1uz,z50, ~B1!

ux,t22ty~12x!52r ,x1~11a!~ux,xx1ux,zz!, ~B2!

uy,t5ux1~12a!uy,xx1~11a!uy,zz), ~B3!
on
-

s-

uz,t52p,z1~11a!~uz,xx1uz,zz!. ~B4!

The solution of Eqs.~B1!–~B4! is sought by using expansio
~13! with m51:

ux~x,z,t !5F (
n51

`

ûn1~ t !sinnpxGcoskz, ~B5!

uy~x,z,t !5 (
n51

`

@n̂n1~ t !coskz1 n̂n0~ t !#sinnpx, ~B6!

uz~x,z,t !5F (
n51

`

ŵnm~ t !cosnpxGsinkz, ~B7!

p~x,z,t !5F (
n51

`

P̂nm~ t !cosnpxGcoskz. ~B8!

Using Eqs.~B5!–~B8! and applying the Galerkin projection
the linear stability analysis leads to the following express
for the critical Taylor number, Tac :

u4tn
3k2TacBnm2~11a!~11a12an2p2tn!dnmu50,

~B9!

wherednm is the Kroneckerd, tn51/(n2p21k2), andBnm is
the same symmetric matrix given by Kuhlmann@3#:

Bnm5H 1/4 n5m

0, n2m even, nonzero

4nm

p2~n22m2!2 , n2m odd.

~B10!

The characteristic equation~B9! yields the marginal stability
curves for an arbitrary number of eigenmodes~B5!–~B8! in
the ~k, Ta, a! space. Note that Eq.~B9! reduces to Eq.~A4!
in Ref. @3# for a Newtonian fluid, that is, asa→0. Equation
~B10! is solved using the IMSL-DLFDRG routine.
uid
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