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Shear-thinning-induced chaos in Taylor-Couette flow
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The effect of weak shear thinning on the stability of the Taylor-Couette flow is explored for a Carreau-Bird
fluid in the narrow-gap limit. The Galerkin projection method is used to derive a low-order dynamical system
from the conservation of mass and momentum equations. In comparison with the Newtonian system, the
present equations include additional nonlinear coupling in the velocity components through the viscosity. It is
found that the critical Taylor number, corresponding to the loss of stability of the(Gasette flow, becomes
lower as the shear-thinning effect increases. That is, shear thinning tends to precipitate the onset of Taylor
vortex flow. Similar to Newtonian fluids, there is an exchange of stability between the Couette and Taylor
vortex flows, which coincides with the onset of a supercritical bifurcation. However, unlike the Newtonian
model, the Taylor vortex cellular structure loses its stability in turn as the Taylor number reaches a critical
value. At this point, a Hopf bifurcation emerges, which exists only for shear-thinning fluids.

PACS numbeis): 47.50:+d, 05.45-a, 47.32-y, 47.20—k

[. INTRODUCTION tem with the Prandtl number equal to unity. In this case, the
model cannot predict the destabilization of the Taylor vorti-
The interplay between inertia and shear-thinning effects i€es, and therefore cannot account for the onset of chaotic
examined for axisymmetric Taylor-Couette floWCF) in behavior.
the narrow-gap limit. Shear thinning is an inherent property Although dynamical systems have been mainly formu-
of polymeric fluids used in materials processing. The rate ofated for Newtonian fluid$3,4], they have recently been ap-
shearing during a polymer process can be high enough fgslied to non-Newtonian fluid§5—10]. Earlier formulations
the viscosity to change typically by a factor of 1000. It is examined the thermal convection of viscoelastic fluisls7]
therefore not realistic to assume that the viscosity, which isand weakly shear-thinning fluid§] using truncation levels
directly related to the rate of strain, be constant as in th&imilar to the Lorenz moddl2]. Despite the severe level of
Newtonian case. However, the presence of a rate-of-straittuncation, the low-order dynamical system approach yielded
dependent viscosity gives rise to additional nonlinearities a good agreement with experiments in some cases, such as
addition to inertia and coupling among the flow variables. the TCF of highly elastic polymeric solutions, often desig-
Similar to any flow in the transition regime, the TCF of nated as Boger fluidk9,10].
non-Newtonian fluids involves a continuous range of excited The interplay between inertia and elasticity in TCF was
spatiotemporal scales. In order to assess the effect of thfast examined using a system of only six degrees of freedom
smaller length scales on the flow, a high resolution of thg9]. The influence of higher-order modes, stemming mainly
flow field is needed. It is by now well established that low- from normal stress effects, was then investigated for purely
order dynamical systems can be a viable alternative to corelastic fluids without inertia effecfd0]. The finite amplitude
ventional numerical methods in the weakly nonlinear rangeelastic overstabilityin the absence of inertiawhich is usu-
of flow [1,2]. Despite the severe degree of truncation in theally observed in experimerjtl2], was accurately predicted
formulation of these models, some of the basic qualitativefor axisymmetric TVF of the Boger fluids.1] in the narrow-
elements of the onset of Taylor vortices and destabilizatiomap limit. The model predicts, as experiment suggests, the
of the cellular structure have been recovered using low-ordesnset of overstability, the growth of oscillation amplitude of
dynamical systems. flow, and the emergence of higher harmonics in the power
Kuhlmann[3] and later Kuhimann, Roth, and'tke [4]  spectrum as fluid elasticity increases beyond a critical level.
examined the stationary and time-periodic Taylor vortexAlso, good agreement was obtained upon comparison with
flow (TVF), in the narrow-gap limit and arbitrary gap width, the exact results from linear stability analyfis].
respectively, with the inner cylinder rotating at a constant In this paper, the influence of shear thinning on TVF is
and harmonically modulated angular velocity. The solutionexamined by adopting a low-order nonlinear dynamical sys-
to the full Navier-Stokes equations was obtained by impletem approach. Although the present study uses the Carreau-
menting a finite-difference scheme, and an approximate agBird model[11] for the viscosity dependence on the rate of
proach based on the Galerkin representation. Comparison atrain, and thus is primarily concerned with high-molecular-
flows based on the two methods led to good agreement. Aveight fluids, it is also of relevance to shear-thinning fluids
severe truncation level was used, leading to a threein general, even for some simplmonatomig fluids. Using
dimensional system, which turned out to be the Lorenz systhe method of nonequilibrium molecular dynamics, several
authorg14—-16 have shown that even a simple fluidlike lig-
uid argon can exhibit rheologically complex behavior.
* Author to whom correspondence should be addressed. Electronidshurst and Hoovelr14] directly integrated the microscopic
address: rkhayat@eng.uwo.ca equations governing the dynamics of 108 patrticles. They pre-
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dicted that the viscosity of the nonequilibrium fluid system shear-thinning fluid are first derived in the narrow-gap limit.
decreases as the shear rate increases. At higher shear ratee three-dimensional dynamical system is then obtained us-
ranges, a phase transition was observed by Erpendé&tk ing the Galerkin projection method. The coherence of the
which led the system to undergo a two-dimensional orderingmodel is addressed, and a linear stability analysis is carried
Heyes[16] related the rheological behavior of the flow to the out involving an arbitrary number of modes to ensure the
dynamics of molecular interactions to investigate the causeeliability of the low-order model.

of shear thinning in simple fluids. Based on the kinetic

theory of simple dense fluids, EEU.7] and Bhattacharya and A. Governing equations in the narrow-gap limit

Eu [18] examined the shear-rate and frequency dependence Consider the flow of an incompressible shear-thinnin
of viscosity for a dense Lennard-Jones fluid, and compareﬁ id b nfini X Ip lind £ dg
their results with the molecular dynamics simulation of ul etV\_/_een two Infinite, coaxial cylinders ot Inner an
Evans[19]. Generally, the kinetic theory foundation of con- outer radiiR, andR,, respectively. The inner cylinder is
stitutive models for monatomic dilut@enseg simple fluids, assumed. to rc_)tate at a constant angular yelodﬂy,The
based on the solution of the generalized Boltzmann equatior?Uter cylinder is assumeq to be at res@. In this case, th? flow
clearly reflects the non-Newtonian characteristics of sucﬁé governed by the following conservation of mass and linear

fluids[20—22. The major distinction in constitutive behavior momentum equations for an incompressible fluid:

between these monatomic fluids and po_lyatomic quu_ids_ ap- V.U=0, (1)
pears to be the form of transport coefficients in the limit of
zero-shear-rate ran@23]. The non-Newtonian character, in- p(U1+U-VU)=—VP+V-(ul). %)

herent to other simple fluids such as rarefied gases, can also

be inferred from the kinetic theory of Grad’'s 13-momentyhere a comma denotes partial differentiation. Héfe
method[24]. _ - =(Ug,Ug,Uy)Tis the velocity vector in the cylindrical po-
The present study isolates the effect of shear thinningy, coordinates R,®,Z), with Z taken along the common
from that of fluid elasticity. The reader is referred to thecylinder axis,P is the pressurey is the shear-rate dependent
review by Larsor{25] for a general overview of viscoelastic viscosity, p is the density,T is the time,V is the three-
instability. To our knowledge, there has been no eXperimenEjimensional gradient operator, afit= VU+(VU)T is the

ts?:ez\r/-lgheigr?% Ofﬂgi]gs e;l;sqtile;c?o (Q,{E]Zt,[e;gml'\lsé'\ztgggzs flfl?i:js rate-of-strain tensor. The fluid is assumed to have a zero-
9 ' shear-rate viscositytq. In this study, only axisymmetric

e e e oo s considered, 2 it e dependncera neglcie.
on the interplay between inertia and shear thinning, and The first step in reducing Eqél) and (2) to the narrow-

therefore on the departure from Newtonian behavior. ThJaP limit consists of introducing dimensionless coordinates,

- x and z, in the transverse and axial directions, respectively,

critical Taylor number at the onset of the Taylor vortex cel-.. .
. timet, pressurep, velocity components,, u,, andu,, and
lular structure is expected to be lower than that for a New- . . ; y
. ) o viscosity 7, as follows:

tonian fluid as a result of the decrease in viscous effects. One
also expects, similar to Newtonian fld], that two steady- R-R;
state branches emerge at the onset of a supercritical bifurca- X= D
tion at a critical Taylor number that depends on shear thin-
ning. The question arises then as to whether these branches M
lose their stability, in turr(for instance, via a Hopf bifurca- u,=—Ug, ufﬁU@, u,=—U,, n=—,
tion), as the Taylor number exceeds another critical value as Yo 1 Vo Mo
a result of shear thinning. This is found to be the case for the ()
thermal convection of shear-thinning flui@i8]. Recall that

the Newtonian mode]3] cannot predict the destabilization

of tlhet;‘raylor vorttex flow. level of t i i Ref In this study, the flow is taken as the superposition of the

n the present paper, a level ot runcalion as In RISy, q0 5 and a perturbation from the base flow. Unlike
[.3"8’9] is adopted in the Fogrler representation fo_r the fIOWNevvtonian flow, Eq.(2) can admit a multiplicity of steady-
Ilek:r'] Sklch_levgis kOf trunC(I:atlon have altgo begn vl\gdely_ use%tate solutions because of the nonlinearity resulting from
or the Navier-Stokes and energy equatipp-24. Exami- shear thinning. In the narrow-gap lim{see beloy, the

nation of the influence of additional modeg9—31] indicates steady pressura® and transverse velocity com oneu@
that many of the gross features predicted by low-order mod= yp s y P "
are governed by

els are essentially recovered by higher-order models. Th

S
Z_B’ D2 p—p—v(zj )

where D=R,—R; is the gapwidth, andvy=uq/p is the
zero-shear-rate kinematic viscosity.

choice of a suitable constitutive model is crucial here, since d duwl\ dul

the initial objective is to highlight the fundamental role p,)?:Ta(ug)?, — n(—y)—y =0, (4)
shear-dependent viscosity may play in the stability of the dx| 7\ dx /] dx

flow.

where the dependence of the viscosifypn the shear rate is
shown implicitly. Here Ta is the Taylor number, which will
be introduced shortly. While the pressure is uniquely given
in terms of the velocity, there may be more than one solution
The low-order dynamical system for a Carreau fluid isfor the latter. The purely azimuthal or circular Couette flow
derived in this section. The general equations for a weaklfCCF) is only one possible solution. In other words, setting

Il. PROBLEM FORMULATION
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the shear rate to constant after integrating the second equa-0, one recovers the expression for the Newtonian viscos-
tion in Eq. (4) is one among many possibilities. Other pos-ity. It should be noted thak is negative(positive for shear-
sibilities include a shear rate thatyislependent but such that thinning (thickening fluids. It is thus assumeldr|<1. Note

the product of viscosity and shear rate remains constant. It ihat expression(9) also corresponds to second-order fluids
anticipated that the CCF solution loses its stability once thg¢11].

Taylor number exceeds a critical level. However, the ques- The deviation from the CCFuy, uy, andu,, for the
tion arises, given the multiplicity of the steady-state SO|Uti0n,Ve|ocity componentsp’ for the pressure, andy’ for the

as to whether the CCF is the most stable solution in theiscosity, are defined as

precritical range of Taylor numbers. This question will only

be addressed briefly below. In this work, the CCF is the only Ug=U,—Ug, uj=uy—ud, u,=u,—uy,
base flow whose stability is examined. In the narrow-gap
limit, the corresponding velocity componentsR(u,u)” p'=p-p° ' =n—7° (10

and pressur@®, are given explicitly as
The explicit expressions fop® and 7’ will be given shortly.
ug=ul=0, w=1-x, p=Tal-x)? (5)  Using Egs.(3), (5), (9), and neglecting terms @ (&), Egs.
_ ) ) ) ) (1) and (2) reduce to the following form in the narrow-gap
in which Ta is defined in terms of the Reynolds number, Re|jmit:
and the gap-to-radius ratie;

Uy xtu,,=0 11
QRlD D X, X z2,Z ( 6)
Ta=R€¢e; Re= , &=, (6) 2
120 R; Uy i+ Uyl F Ul ,— 75— 27, (1= X)
It is important to observe that the CCF in E§) is indepen- = — Pt (7°4+ 7) (U xxF Uy 22)
dent of the form of the viscosity since the shear rate is con-
stant. + 277,xux,x+ 77,z(ux,z+ uz,x)1 (11b
In this work, the Carreau-Bird model is adopted, more 0

particularly for weakly shear-thinning fluidsvith small time Uy, 1 Uxly x Uzl ;= Uy (27777) (Uy ot Uy 22) 77, 2Uy
constant A major advantage of this model over other mod- + 7x(Uy— 1), (110

els, such as the power-law model, is that Newton’s law of
viscosity[11] is recovered in the limit of zero shear rdfj. _ 0
S ; ; . Uy, (U,  +UU, ,= =P+ (774 7)(Uy U
The general Carreau-Bird viscosity model can be written in 2t ~x72X " "z72z Pt (77 1) Uzt Uz 2)
dimensionless form: +279 Uyt 1+ (Uy ;1 Uz y),

n(y)=s+(1-s)[1+(Dey)?] " V72 (7) (11d

wheren is the “power-law exponent,” which is less than 1 Where, for simplicity, the primes are dropped. Finally, by
for shear-thinning fluids is the magnitude of the dimen- Substituting fory, we obtain the expressions fgf and 7 (or

sionless rate-of-strain tensgr=(D/R,Q)T", andsis the ra- ).
tio of the zero to infinite shear-rate viscositigkl]. Here,

De=A\R;Q/D is the “Deborah number” for the problem,

being the time constant. More explicitly, is expressed in
terms of the components of the rate-of-strain tengoras

[11]

7P°=1+a, 7]=a(u§’X+ u;z—Zuy’X). (12

The solution of Egs.(11) is considered next using the
method of Galerkin projection.

B. Galerkin projection and the dynamical system

&
Y= \/7’531+ Yert ¥t 2 7al Yot Yyt vz ® The Galerkin projection method consists of expanding the
velocity and pressure in terms of orthogonal functionscof
where it is recalled thaty;;=u; ;+u;;, with i,j=x,y,z. andz, and project Eqs(11) onto each mode of expansion to
Note that in the present problen'jv,f,yzo since the flow is generate a set of ordinary differential equation that govern
axisymmetric and the gap between the two cylinders is narthe time-dependent expansion coefficients. The type of or-
row. In this study, it is assumed that ¥®(1), sothat the thogonal functions depends on the geometry and boundary
terms ofO(e/Ta) in Eq.(8) can be neglected. If De is small, conditions. A periodic solution is taken along the cylinder
then » may be reduced to axis. For simplicity, the rigid-free boundary conditions are
assumed. The fluid is assumed to adhere to the cylinders in
n—-1 he azimuthal direction, and it i m lip alongzth
77('3/):1+(1—s)(7)(De'y)2=1+a'72, ) Ejireegtion.m al direction, and it is assumed to slip alongzthe
We follow Kuhlmann and co-workel,4] to obtain the
where higher-order terms in De have been neglected,aand flow departure by solving Eq$11) and introducing infinite
=(1—s)(n—1/2)Dé. Fourier series in the and thez directions, with the series
Hereafter in this paper, the parameteis used as a mea- coefficients depending only on time. The general solution for
sure of non-Newtonian effect, and is assumed to be smathe axisymmetric TVF can be decomposed into sine and co-
enough for approximatio8) to hold. Thus, in the limitx sine normal modes as
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TABLE I. Influence of higher-order modes on the values of the critical Taylor nunieY,and corre-
sponding wave numbek,,. Herea=—1.

Newtonian fluid Shear-thinning fluid
Number of modes K Ta K Ta
1 2.22140 657.511 36 2.127 90 45255779
2 2.227 20 654.256 57 2.13060 451.554 32
3 2.227 20 654.256 50 2.13060 451.554 31
4 2.227 20 654.256 09 2.13060 451.554 19
5 2.227 20 654.256 09 2.13060 451.554 19
10 2.227 20 654.256 09 2.13060 451.554 19
- ” R . d,l\/zo T 2a ~3 2~
U(x,z,t)= >, > CO,m(t)sinnmxcosmkz (133 Gt = 7 U 47 it a(Cyiet Colyiag
n=1 m=1
L +Caiolaot Cabiy+ Cobigt Colo), (140
uy(x,z,t)znz,l Lz,l Pam(t)sinnarx cosmkz i , o . .
TR T a(D1 V1ot Doviivigt Dabiorio
+ %no(t)sinnﬂx y (13b) + D4,1\/20’1\/10+ D5’1>10), (14d}

whereAq,...,As, B4,....B5,Cq,...,.Cs, Dq,...,.Dg, depend
© @ only on k and are given in Appendix A. Here=(1/m?
U (x,z,t)= > > Wyn(t)cosnmxsinmkz (1390  +k?). Note that we made use of the relatioh(t)
n=1m=1 = — (m/K)044(t), which results from the continuity equation.
In order to justify the restricted number of modes in the
direction, the minimum critical Taylor number, Ta and
) Pnm(t)cosnmx cosmkz  (13d  corresponding wave numbdx;,, are first computed using an
arbitrary number of modedy. The details of the derivation
~ R R R ) are given in Appendix B. The linear stability analysis of Egs.
where Onn(t), Vnm(t), Wnm(t), and pnn(t) are time- (1) is carried out using the general soluti¢hd) with N
dependent coefficients ads the dimensionless wave num- — 1 The influence of the number of eigenmodes in the
ber in thez direction. The first step in the Galerkin projection grection is reflected in Table | for both a Newtonian fluid
method consists of substituting EqEL3) into Egs. (11).  and a shear-thinning fluid with= —0.1. The table indicates
Equations(11) are then multiplied by the appropriate mode that the higher-order modes cause corrections to the first ap-
and are integrated overe [0,1] andze[0,m/k]. proximation that are of order 18 for both fluids. The com-
The basic model, which involves only dominant modes,parison thus shows that the severe truncation level adopted in
consists of the fundamental mod@gi(t), v11(t), Wii(t),  the current study is not unreasonable.
and pyy(t), which are coupled nonlinearly by,q(t) and The set of Eqs(14) is reduced to a three-dimensional
va(t). The justification for such a severe level of truncationgystem if we note thaf,o(t) can be decoupled from the

is based on the results from linear stability analysise be-  remaining coefficients. This is demonstrated by first rewrit-
low). Comparison between exact and approximate values fokg Eq. (14d) compactly as

the critical Taylor and wave numbers leads to excellent
agreement. dvyg 5 o
After eliminating the pressure coefficient, the resulting set gt L7 taF(P0,000, 011,020 1010 (19
of nonlinear and coupled ordinary differential equations,
which govern the time-dependent expansion coefficients, besice « is considered to be smalH0.1< «<0) andF is

M s
M s

p'(Xx,z,t)=

=)
I
[us

come 0O(1), theterm — w2+ aF is O(?) and the contribution of
aF is negligible. This means that;y(t) decays exponen-
dipy i 167k* o tially with time, with uninteresting transients, similarly to the
gt - K Tav— gt Tar= ot a(Abyly Newtonian cased=0). Therefore, with the following scal-
ing for the most prominent modes
+ ARt Agtoglingt Ayl + Asllyy), (143
TT m R
Ay . . . U_Eull(t)v V_5V11(t)v w=—miy(t), (16)
gt TUupotUn— 7 vyt a(Byvy;t Bovighng

o o R we finally arrive at the following three-dimensional dynami-
+ B35l + Babooris+ Bsvay), (14D cal system:
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whereG(u,»,w) is an explicit polynomial function ofi, v,
ur’+2(2—=b)uw’  andw. It is evident that for values dfa|<1, terms multi-
plied by « in Eq. (21) are dominated by the quadratic terms,
and thereforeDF remains negative. In this case, no trajec-
' (17a tory originating from a point with a finite distance from the
origin can go off to infinity. Thus, the basin of attraction
around the origin becomes larger for smaller valueg.of
3+ 2(b+2)vw? We now turn our attention to the coherence of the model
pertaining to the volume contraction. Consistently with the
original equation(1), Egs.(17) must be dissipative. Thus, a
—2(b—2)vw+(b+ 2)v] , (17b volume,V(t), in phase space must contract. For volume con-
traction to be insured, the velocity field must have a constant
negative divergence everywhere or

o

U=rv—u—§H(4—b)(b—Z)+§—2

—(b—2)2—(b—2)2uw+2u

9
“+b-4

) a
yv=—UwW+u—v— < b

2

o
w=ur—bw— E[vav3+ 2(b+2)v’w+(b+2)v?+6bw],

(170 1 dv(t) du N v N W > b+ aH

V) dt  au av  ow aH(u,v,¢).
where a dot denotes total differentiation with respect to time, (22)
andb=4?7. For convenience here, we have introduced the

reduced Taylor number, which will be used later as a con- HereH is a polynomial inu, », andw, which is not given

trol parameter for the stability analysis: explicitly. From the expression above, we note that|fef
<1, V- idVv/dt becomes approximately equal to a constant:

r=Tar’k>. (18  —(2+b), i.e., the volume decreases monotonically with

The analysis of the solution of Eq&L7) is our main objec- fime.

tive. In the limit «—0, Eqgs.(17) reduce to the Newtonian

form [3], which corresponds to the Lorentz system with the !l BIFURCATION AND STABILITY ANALYSIS

Prandtl number set equal to[32]. Compared to the New-

tonian system, Eqg€17) are highly nonlinear. In addition to ~ In this section, we obtain the steady-state solutpuwf

the usual nonlinearities stemming from inertia effects, therd=gs. (17). Some of these solution branches correspond to
are nonlinearities stemming from shear-thinning effects. Fipurely circular (Couett¢ flow, and other branches corre-
nally, we note that Eqg17) are invariant under the symme- spond to toroidalTaylor-vortex flow. The stability of both

try operation (1,v,w)—(—u,—»,w). This is consistent the CCF and TVF is examined by exploring some of the
with the physical situation of shear-thinning fluids and thefundamental differences between Newtonian and shear-
orientation of the flow within the vortex structure. thinning fluids. In comparison with the Newtonian system,
the presence of the nonlinear terms resulting from shear thin-
ning leads to additional complexity from both the math-
ematical and physical points of view. Expectedly, for very

As in the case of the Newtonian system, it should besmal| values ofa, similar behavior is obtained for Newton-
ensured that the introduction of the severe truncation has N@4n and non-Newtonian fluids.

caused a singularity in the lower-order mod&¥), and that

the model remains physically consistent. To this end, we use -

a Lyapunov function for the model and show that the solu- A. Stability of the base flow

tion of Egs.(17) remains boundef33]. In other words, we The stability analysis for a shear-thinning fluid is carried
must show that the three-dimensional fiéld v, w) is every-  out around the CCForigin in phase spageThe analysis is
where directed toward the origin on a surface surroundingased on the linearization of Eq4.7), and is similar to the
the origin, and is located at a large distance from it. Letanalysis based on the Newtonian equatif®s Linear sta-
F(u,»,w)=0 be the equation of such a surface. Thus, wehility analysis around the origin leads to three characteristic
must have, everywhere in phase space: roots, one rook ;= —b(1+3a), turns out to be independent
of r, and the other two roots are governed by the following
equation:

C. Consistence of the low-order model

DF=0UF + bF ,+WF ,,<0. (19

There is a wide range of possibilities for the choice of the
surfaceF. The following sphere turned out to be a suitable A2+

ab
21+ a)— —
; 2
choice:

N+ (re—r)=0. (23

1, Thus, N\, is positive fora>—1/3. With the assumption of

Flup,w) =z (u 7w —A, (200 fluid being weakly shear thinningy cannot reach this value.

The other two roots\, and\ 3, are always real. One of the

with A>0 and arbitrarily large. Substituting this expressionf00tS; A2, is always negative, anil; becomes positive for
for F into Eq.(19), and using Eqs(17), to obtain r>re, with r¢ given by

DF=—-u?—v?—bw?+(r+1)ur+aG(u,r,w), (21) re=(1+a)?+(1+a)abl/2. (24)
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1/k? neark=0, reaches a minimum, and then increases like
! k? for large k's. The value ofk,, tends to increase as
decreases. On the other hand, this minimum becomes less
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""" pronounced with increasing shear thinning of the fluid, re-
e sulting in a wider range of Taylor vortices ne@ay . It is
T inferred from Fig. 2 that shear thinning tends to precipitate
e the onset of axisymmetric Taylor vortices at any value of the
S wave number in the axial direction. As shear thinning in-
T creases, the critical Taylor number reaches a zero atue
e a=00 — =—1 in Eq. (24)]. In this case, we formally recover the
077 -0050 - Rayleigh stability picture for an inviscid fluid. The recovery
-0100 - of the limit of zero critical Taylor number must of course be
interpreted with caution as the limit=— 1 is not within the
0 2 4 6 8 10 range of validity of the present theory.

e (ko)

0.6

k

B. Steady-state solutions and bifurcation diagrams
FIG. 1. Influence of shear thinning on the onset of Taylor vortex . . . . .
flow. Critical valuer =r, at the onset of supercritical bifurcation AS in the Newtonian equations, a trivial solution of Egs.

(Taylor vortex flow as function ofk for —0.1< a<O0. (17) exists, which corresponds to the CCF or the origin in
phase space:

Note that for a Newtonian fluid,.=1. The second term in
this expression contributes to the decrease dimilarly to
the first term, ase assumes smaller value(ao'ge thata . In the limit «—0, the nontrivial steady-state solution
<0). The effect of the second term, however, is not as Si9pranches for a Newtonian fluid are given by

nificant as that of the first one. The dependence.ain the

wave numbek is depicted in Fig. 1 for typical values af. hir—1)

It is evident from the figure that for smallervalues, in the ul(r)==+vb(r-1), »¥r)= iM,

range G<k<4, r. increases noticeably, while fé&>4 this '

increase is insignificant. This explains why, for a giveim
the rangek>4, the stability analysis around the origin gives wh(r)=—=. (26)
almost the same results regardless of valuke éfowever, as r

a increasesr . becomes less sensitive to changes.in . . - -
It is instructive to explore the variations of the critical For shear-thinning fluids, similar nontrivial, steady-state so-

Taylor number Ta=r./7°k? as a function ok. For a given lution branches exist, but they cannot be obtained analyti-
Cc d .
a value, the minimum critical Taylor number, Faoccurs at cally. These two sets O.f branches will be denotedhyand
a wave number k,=m\(at1)/(@t2). For aec C,. In order to determine the steady-state brancheasg of
m_ . - . pr _ .
[—0.1,0.9, k,, decreases monotonically as with shear thin'ﬁgg;\(llll\r/:slf_?lsj.l\(llEY()g,NaJ)mv(\)/iCti;:I?r?e%Zﬁ%?aﬁ%ﬁﬁgnsn;?gr‘r?clj):
ning at most only 3% from the critical wave number for the X Y

: . . ing provided. However, despite the robustness of the
NeW“.”."a” casex/v2) [3]. Figure 2 shows the behavior of Newton-Raphson method, and the fact that the nonlinearities
the critical Taylor number as a function of the wave number.

for tvpical values ofx. For all « values. Ta decreases like involved in the algebraic equations are only polynomials, the
yp a. @ 18 bifurcation branches for various values were found to be

100000 — difficult to generate. The steady-state solution was found to
be extremely sensitive to the initial guess. The guess had to
be provided accurately enough for the method to converge.
This difficulty was circumvented by transforming the alge-
braic equations foug(r,a), vs(r,a), andw(r,«) into a set

of ordinary differential equations, with being the indepen-
dent variable. The set of three algebraic equations are, of
course, obtained by setting the time derivative in H4S)
equal to zero. Three first order differential equations are ob-
tained by differentiating the algebraic equations with respect
to r. This strategy is now illustrated in the case of a New-
tonian fluid, although an analytical solution exists in this
case. The algebraic equations that govern the Newtonian
steady-state flow are

Ug(r,a)=v(r,a)=wg(r,a)=0. (25)

10000 -3

Ta, (k. &)

1000

100

. rof—ud=0, —udwl+ul-Y=0, udvl-bwl=o0.
(27)
FIG. 2. Influence of shear thinning on marginal stability curves.
Variation of the critical Taylor number, Ta as function ofk for If the solution to this set of equations is sought for a given
-0.1<a=<0. value, then the steady-state solution can be considered as the
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0.25

u(r, a)
v (r, o)

0.8
0.2
0.6
0.4

0.2

T
0 0.5

T r

FIG. 3. Influence of shear thinning on TVF. Bifurcation dia-  FIG. 4. Influence of shear thinning on TVF. Bifurcation dia-
grams foru=ug as function ofr for —0.1=a<0 (k=6). Note that  grams forv=v, as function ofr for —0.1<a<0 (k=6).
only one branch is showrn; and notC,) because of symmetry.

dependent variable, arrdbecomes the independent variable.Catlon dlagram Is_symmetric, only one set of solution
branches C,) is shown. Asa decreases from zero, takes

Then the differential equations are obtained by differentiat-On lower values. Shear thinning tends to accelerate the flow
ing the system of three equations above with respeci to in the (x,2 plane near the onset of TVF. For the higher range

give of r values, shear thinning tends to slow the flow down.
dul rLul N+ b(wh— 1) [N y R_egarding the(d_eviatior) flow in the azir_nuthal direction,
= N NN 2t vss (289 similar opservauons apply tog(r,a), WhICh.IS related to
dr pr—1—-rwd)—rufvl—ul p14(t) (Fig. 4. However, wy(r,a), which is related to
\ NN N \ voo(t), increases with both inertia and shear thinning mono-
dvg lugvg +b(wg —1)]vg tonically (Fig. 5).

Two additional nontrivial steady-state solution branches
were also identified, which do not exist for a Newtonian
2 fluid. These solutions are independentrpind exist only if
dwj _ [ugvs+b(wg —1)](rvg +ug) vg ﬁ —1/6<a<0 for a shear—thi?ming fluid. The solztion
dr r—1—rwsy—b(rvl+ul)ul b~ branches are given by(r,a)=ry(r,a)=0 andwy(a)=
(280  *[—(1+3a)/3z]¥% They represent approximations to
o ) ) , nonlinear purely swirling flows, in addition to the CCF.
Thus, f_or a shear-_thlnmng _fIU|d, a sol_utlon b_ranch is soughtyyhether these flow profiles have any physical significance is
for a givene, by first seeking a solution point provided by gigricylt to assert, especially for purely shear-thinning fluids.

the Newton-Raphson method. Then using this point as agq,r some flows that obey nonaffine viscoelastic constitutive
“initial” value, the solution branch is generated using a

sixth-order Runge-Kutta algorithfiMSL-DIVERK). Note
that the starting poinfobtained using the Newton-Raphson
method at r=r;,;, is usually difficult to obtain near the
critical point, and it is typically evaluated far ahead, for 084
rini>>rc. The nontrivial solution branch is then generated
(using the Runge-Kutta methpdy increasingr, for the
ranger >r;,;, and then by decreasingfor the ranger .<r 061
<rini. However, it is important to note that Eq®8) are
also difficult to solve near the critical point as they become
singular atr=r..

The steady-state branches;, vs, and wg for ae
[—0.1,0.0 andk=6 are plotted as functions af and are 021
shown in Figs. 3, 4, and 5, respectively. This value of the
wave number is chosen for claritgee below. It can be seen
from Fig. 3 that, in general, the origifin phase spagere- 0 03
mains the only steady-state solution of E@%7) until r
reaches a critical value,;, which is equal to one for the
Newtonian casgsee Eqs(26)]. At this point, two additional FIG. 5. Influence of shear thinning on TVF. Bifurcation dia-
fixed branchesC, andC,, emerge, which correspond to the grams forw=wsy as function ofr for —0.1<a<0 (k=6). Note the
onset of Taylor vortices. More specifically, a supercriticaltwo additional steady-state brancheg a)= +[ — (1+ 3a)/3a]*?
bifurcation is observed at the critical point. Since each bifur-are not shown.

- .
dr  prr—1—rw)—rudpN—ul

wy(r, o)

044
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equations(also exhibiting shear-thinning effegtssimilar Strange
nonlinear(Couette flow profiles are obtainef34]. The two

additional branches are an example of the solution multiplic- / sub-critical
ity of Eq. (4). However, they can also be an artifact resulting SRR | b o

from the severe truncation used, but may be more or less
stable than the CCF. The analysis of stability of these two
branches will not be addressed in the current paper.

pitchfork
bifurcation

u (1, o)

C. Stability of the Taylor vortex flow

Consider next the stability of the steady-state bran€hes P : ; : _ """
andC, asr is increased beyond,. For a Newtonian fluid, : Vi ;
linearization of Eqs(17) around the steady-state branches

] D
v .o

(26) leads to the following characteristic equation: r=0865 te=125 28;5h rhtl=34-8
: H ! hyste-
: imetastable chaos ; resi
N+ (b+2)N2+Db(r+1)A+2b(r—1)=0. (29 s steady | e T
state ! 2 steady states : chaotic state
The roots of Eq(29) have a real part that remains negative '
for any value ofr. Thus, forr>r., the three-dimensional FIG. 6. Schematic illustration giving the overall stability and
Newtonian model cannot predict any destabilization of thebifurcation picture for a shear-thinning fluid far= —0.075 anck
TVE. =6. The supercritical pitchfork bifurcatiofwith branchesC; and

Linear stability analysis around th®, andC, branches C2) emerges atr.=0.855. The subcritical Hopf bifurcation
for a shear-thinning fluid leads to a cubic characteristic equaMerges at, =34.8, and intersects tieaxis atrp,=12.5. Stable
tion similar to Eq.(29). However, the coefficients in this case nd unstable branches are drawn using solid and dashed lines, re-
are not explicitly expressible in terms of the steady-state gospectively. Note that the notations used_ in the figure and flgure_
lutions: these latter not being available analytically. In thislayout are the same as those corresponding to the Lorenz system in
case, the coefficients of the terms in the characteristic Ref. [2].
equation are determined numerically. Computations show ) )
that these branches are linearly stablerforr . nearr.. In a havior can o_nIy be _understood_when the numerical s_olutlon
typical case ofa=—0.075 andk=6, the linear stability is of Eqs. (17)_ is obtam_ed. Th(_a time-dependent evolution of
lost to an inverse Hopf bifurcation ag,=34.8. At this point, IOW is carried out using a sixth-order Runge-Kutta scheme
only an aperiodic solution exists in the form of a strange(/MSL-DIVERK). The solution depends on the initial condi-
attractor[2]. This situation holds as long asremains close tions assumed. It is fc_)und t_hat, regardle_ss of these conditions
to zero. The bifurcation picture is therefore shown schematith® long-term behavior will be essentially the same after
cally in Fig. 6. At some point,,=12.5, the inverse Hopf transients die out, indicating that the solution branch is
bifurcation branches intersect theaxis. Here, in the range Unique, at least for the range of parameters covered.
re[1,12.5), C, and C, are globally stable: for any initial The present calculations are gonducted f(_)r a fluid with
perturbation, the solution converges to these bran¢bes @ = —0.075 andk=6, corresponding to a typical Carreau-
Fig. 6). In the ranger [12.5,34.8, the solutions will con- Bqu fluid. T_he ch_0|ce of these parameters is not gnnrely
verge toC, andC, only if the initial perturbation is not too grbltrary. T.h|s choice turns out to _be appropriate as interest-
large; the branches are locally stable. In this range, if thd"d dynamics are observed whens varied. In particular,
perturbation is too large, a chaotic solution results. Thys,
is determined numerically, and it corresponds to the point 100
whereC; and C, lose their globalto only loca) stability.

Note that the dashed lines illustrating the amplitude of the
inverse bifurcation in the Fig. 6 are only sketched and not
accurately determined. Beyond=34.8, stability is not
achieved although there is some order within the chaos vii 6o |
inverse period doubling and intermittency.

Variation ofry,; vs k for the rangea e[ —0.07,-0.1] is
depicted in Fig. 7. It can be observed thgy for —0.07 or
<a<—0.08 is very sensitive to the choice of In this
range; increases sharply witk At abouta=—0.075,r,;
changes curvature and levels off at some hidghealue. This
trend continues until no substantial change for the case
—0.1 is detected. Thus, the TVF appears to be always un
stable for pronounced shear thinning.

=-0070 |
~..2007
2007

a
%05,
~.0,
o5,

o
;QAQ/”

Tk, @)

IV. NONLINEAR DYNAMICAL BEHAVIOR FIG. 7. Influence of shear thinning on the destabilization of the
Taylor vortex flow. Critical pointr=r,; vs k at the onset of the
While the analysis above determines the conditions fosubcritical Hopf bifurcation for —0.1<a<-0.07. Note that
instability of the steady-state branches, the full nonlinear beim,_ o ry,(r,a)—o.
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FIG. 8. Time decaying flow. Phase trajectory in {oev) plane ‘
for r=4, a=—0.075, anck=6. e

and on the basis of Fig. 2, a more appropriate value for the = D
wave number would be 2.2, as it is roughly at this value that A e D))

the first instability is likely to be observed. However, the —
dynamics based ok=2.2 is similar but more difficult to
clearly observe than that basedlon 6. In what follows, the
influence of inertia for a shear-thinning fluid is examined by
varying r. We choose to represent the various solutions as
time signatures, phase plots, and/or power spectra depending
on which of these representations is most insightful.

log;o(PSD)

A. Onset of early chaos

Consider the range af values around the onset of the J 7
supercritical and the Hopf bifurcations. Stability analysis FREQUENCY
shows that, fora=—0.075 andk=6, there is a loss of sta- o ) )
bility of the CCF atr.=0.855[see Fig. 3 and Eq(26)]. FIG. 10. Onset of_aperl_odlc or chaotic motion fOF'35.2,a
Figure 8 shows the time signaturg(t), and the phase tra- __ 0-075 andk==6. Time signatura(t) (a), corresponding phase
jectory in the(u,v) plane forr =4. The flow exhibits an os- trajectory in the(u,») plane(b), and power spectrurc).

Cillatory decay(from any arbitrary initial pointtoward the  hejr stability as shown in Fig. 6. At this point, the steady
fixed point(1.366, 0.30%in the (u,v) phase plane. Asin-  Tayor vortices lose their stability to adopt an oscillatory
creases, the flow remains essentially the same, with the aag|jylar structure. As increases further, the flow becomes
plitude of the steady-state solution becoming larger. At SOM&y|ly chaotic as can be seen from Fig. 10 for 35.2. From
pointr=rg (in this caser,=6), however, the flow under- {he time signaturéFig. 10@)], the phase portrajFig. 100b)]
goes a hompchmc bifurcation, as shovyn in Fig. 9 similarly and the power spectrufiFig. 10c)], the transition to chaos
to that predicted by the Lorenz equatiof®. In this case i, this case appears to be similar to that leading to the Lorenz
also, the flow decays to a fixed poift1.717,—0.254. This  agtractor. The transition does not follow any of the three
is a global bifurcation that cannot be detected through locaye|-established routes to chaos, namely, via period dou-
stability analysis around the fixed point. What happens as bling, quasiperiodicity, or intermittenci2—4]. Finally, it is
exceeds , is that each unstable manifold of the origin movesyorth mentioning thati) the exchange of stability between
from the basin of attraction of one fixed poiy or C;, 0 the CCF and the TVF via a supercritical bifurcation ras
the basin of the other fixed poirifor more detail on ho-  exceeds, (i) the emergence of a homoclinic bifurcation,
moclinic bifurcation, refer to Ref35]). _ (iii ) the destabilization of thésteady TVF through a Hopf
~ Atr=rq=34.8, linear stability analysis predicts the ex- pjfurcation, andiv) the onset of chaos, constitute a sequence
istence of a Hopf bifurcation, with bot; and C, losing  of hehaviors typically predicted by low-order nonlinear dy-
namical systemp2]. The effect of shear thinning is to lower
4 the Taylor number for the onset of the bifurcations. The dif-
ference in dynamics will, however, become more evident as
inertia is increased.

? 07 B. Flow regularization
2 At r=235.9, the flow begins to show a more coherent and
even periodic behavidisee Figs. 1(a) and 11b)]. The time
" : : : , : signature is not shown, as it does not display any signifi-
06 04 02 0 02 04 06 08 cantly new dynamics relative to Fig. @). There is consid-

erable thinning of the bandwidth of the attractor in phase
FIG. 9. Homoclinic bifurcation. Phase trajectory in thgv) space. The power spectrum in Fig.(hlshows a dominant
plane forr=6; a=—0.075, anck=6. frequency,f,=0.136, which begins to emerge more clearly
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FIG. 13. Period-1 motion and even harmonicsr&t37, a=
—0.075, andk= 6. Phase trajectory in th@,v) plane(a), and power
spectrum foru(t) (b).
than in Fig. 1Qc). The spectrum shows bands of subharmon-
ics of order 3(multiples of f/3). The presence of subhar- however, disrupted asis increased further, leading to inter-
monics is also reflected in the phase portrait in Figall  Mittent motion as discussed next.

The periodicity becomes more apparent for 36, as
shown in Fig. 12. The flow exhibits a period-2 behavior as
illustrated by the phase portrait of Fig. (82 In the Fourier The intermittency scenario is one of the typical routes of
spectrum a weak subharmonic, with2, is identified. AS™  yansition from a periodic state to chaf36]. Period dou-
is increased, complete periodic behavior is reached, roughlyjing as discussed earlier, is another possible route. In gen-
at r=37, with the temporal behavior and phase trajectonyerg| a signal is called intermittent if it is subject to infre-
exhibiting distortion due to nonlinear effects as shown inguent variations of large amplitude. Here, we are particularly
Fig. 13. In this case, there is no subharmonic. Merely, thenierested in temporal intermittency, which can exist in dy-
even harmonics are present, which change the symmetry gfymical systems with a small number of modes during tran-
u(t). The basic periodic motion is shown in Fig. 14 for  sjtion from periodic to chaotic motion. The mechanisms for
=39. The spectrum in Fig. 18) contains the fundamental this phenomena were first proposed by Pomeau and Mannev-
and its odd harmonics 3,5f,,...). Asr increases further, e [37),
the motion remains periodic with the distortion of the limit  Eor 5 value of less than 39.3, the dynamical systéhd)
cycle slowly disappearing, and giving way to completelyhas a stable limit cycle as shown in Fig. 14; the solution
symmetric periodic orbits at=39.3. This periodicity IS, oscillates in a regular fashion and is stable against small

FIG. 11. Phase trajectory in t{g,v) plane(a), and power spec-
trum for u(t) (b), for r=35.9,a=—0.075, anck=6.

C. Chaos via intermittency

(@) (a)

0.2 0.4 0.6

log,o(PSD)
&
logo(PSD)

1 2 1 2
FREQUENCY FREQUENCY

FIG. 12. Period-2 motion at =36, «=—0.075, andk=6. FIG. 14. Period-1 motion at=39, «=—0.075, andk=6.
Phase trajectory in the,v) plane(a), and power spectrum far(t) Phase trajectory in th@,v) plane(a), and power spectrum far(t)

(b). (b).
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@ flow behavior, there is always the compelling question as to
10 their practical significance and physical relevance. To our
knowledge, there is no experiment that explores directly the
(eSO RGBT M influence of shear thinning on the stability of TCF. In prac-
! | tice, it is difficult to isolate the effects of shear thinning from
-104 , , , . . . . | those of elasticity during the flow of a polymeric fluid
[12,25,38,3% However, since the present formulation is
based on a truncation level similar to the one that led previ-
ously to good agreement with experiment for the TCF of
‘ il non-shear-thinning viscoelastic fluifis0,40], the present re-
PR sults may be of practical significance. The proposed theory is
not expected to be valid in the far postcritical range of Taylor

(b)

-10 ' T ' * i ' ' ' numbers. It is expected to hold in the linear range, and not
© far beyond the critical point, i.e., after the toroidal vortex
10 flow emerges. However, as in any approximate theory, it is

| DA B A M , often useful to probe beyond the range of validity of the
" LERTRALLLURGAAHTL R ML ‘\»”“!. i model in order to stimulate future experimental and theoret-
pftieA R ‘ T LAt ical studies. More importantly, the reported formulation and
-104 Alhiatil , . . : ‘ , results clearly show the emergence of interesting dynamics
that are completely absent in the Taylor-Couette flow of
Newtonian fluids, and which are solely shear-thinning in-
] | ; ] duced. These dynamics are often exhibited by similar models
‘ ‘ﬂ‘; LR Ut A in the thermal convection of Newtonian fluids. Thus, the
Tt et S "1‘\ approximations and assumptions made in the present formu-
AN ‘ ‘ ! lation are expected to only shed light on the fundamental role
0 100 200 300 400 500 600 700 800 that shear thi_nning plays relative to N_ewt_onian flows. N

t In conclusion, the effect of shear thinning on the stability

FIG. 15. Temporal behavior showing the transition to and onsePf rotating flow in the narrow-gap geometry is investigated.

of chaos via intermittency routéa) Periodic flow atr = 39.302, just ﬁulfcl)lvr\r/\-g;ﬁ?; gg;zrr?[lg? ltk?z;/tStignr]elc:so\(/jee}rel\(/je?n tPhaet Igi]riri]tecr)?“;es
before intermittency sets irib), (c) Intermittent flow atr =39.303 Newtonian fluid. Th | of th t study is t .
andr =39.304, respectivelyd) Chaos atr =39.35. ewtonian fluid. The goa’ ot the present study 1S 1o examine
the impact of shear thinning on finite amplitude Taylor vor-
perturbations. When slightly exceeds; (the intermittency tex flow. The severity of truncation involved renders the
threshold, we begin to observe an intermittent dynamical present model quite crude but allows the examination of the
behavior, with the intermittency growing asncreases. The nonlinear range where a more realigtimimerical approach
resulting sequence of flows is shown in Fig. 15 for would face difficulties. The present study elucidates the new
€[39.302,39.350 It should be noted that the entire processdynamics that shear thinning generates in the nonlinear re-
of intermittency occurs in this narrow rangerovalues. The  gime. From a mathematical point of view, the presence of
periodic behavior just before the onset of intermittency isshear thinning leads to additional cubic nonlinearities in the
shown in Fig. 18a), for r=r;=39.302. Intermittent flow be-  qynamical system, which in turn give rise to a Hopf bifurca-
comes apparent at=39.303 as shown in Fig. 15. The jon otherwise nonexistent in the case of a Newtonian fluid.
time signature in the figure consists of oscillations that apnymerical calculations based on the current formulation
pear regular and that resemble the stable oscillatory behaviQ§, o that shear thinning tends to precipitate the onset of
for r<r;. But now, the oscillations are interrupted from time Taylor vortices and chaos at higher Taylor numbers. The

to time by abnormal fluctuations or bursts, whose amplitud&, ;rrent model also predicts the complete destabilization of
and direction are approximately the same from one fluctuag,e couette flow in the limit of high shear thinning, in ac-

tion to another, and that depend nriThis is also confirmed ¢ rgance with the Rayleigh stability picture for inviscid flu-
from Fig. 15c) atr =39.304, which shows that the duration ids [41-43.

of periodic behavior has decreased. Figureghl&nd 15c)

show clearly that it is neither the amplitude nor the duration

of the exceptional fluctuations that tend to increase as ACKNOWLEDGMENT

creases fronr;, but only their average frequency. These _ .

erratic quctuatIions have)gwell-defineg avergge dli/ration and T_h|s work was ;upported by the Natural Sciences and
terminate as the flow returns to the periodic oscillatory pe-ENgineering Council of Canada.
havior. Asr is further increased, the periodic flow disappears
almost completely, and the motion becomes chaotic as
shown in Fig. 1&d) for r =39.35.

u(t)
S

APPENDIX A

The constants in Eq$14) are given in this Appendix:
V. CONCLUDING REMARKS

6 41,2 21,4 6
Although results based on low-order dynamical systems T +4377k"— 137K+ 9k
are generally interesting as they exhibit complex nonlinear . 16( 72 +k?) '
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Uzt= _p,z+(1+a)(uz,xx+ uz,zz)- (B4)

The solution of Eqs(B1)—(B4) is sought by using expansion
(13) with m=1:

(72 +k?) ' *
Uy(x,z,t)=| >, O,;(t)sinnax |coskz, (B5)
As=—(7*+Kk?), (A1) n=1
4402124 gk _ .2 24 K2 >
A S S Gl Uy(x,2,)= D [Fpa(t)coskz+ bo(t)]sinnarx, (B6)
16 ' 2 ' n=1
By=—27%(37%+k?), B,=-2m(37°+k?), <
U,(X,2,t)=| > W,m(t)cosnmx|sinkz, (B7)
Bg=—(3m2+k?), (A2) n=1
— 194 — 20a 212 o 4 c
Ci=—12n%  Co= =737 +k%), Cy=-—27", p(x,z,t)={2 P.m(t)cosnarx|coskz. (B8)
n=1
(372 +k?) s )
Comm——% 1 Cs=75, Ce=—1277 Using Eqs.(B5)—(B8) and applying the Galerkin projection,
(A3) the linear stability analysis leads to the following expression
for the critical Taylor number, Ta
3t w2 (25m° + 3K?
Dy=——— Dp=- %, Dg=—67", |473K*TaBym— (1+ @) (1+ a+2an?m?7,) 8, =0,
(B9)
D,=107° Ds=-37% (A4)  whered,n,is the Kroneckes, r,=1/(n*>m2+k?), andB,, is
the same symmetric matrix given by Kuhlmaj8i:
APPENDIX B 1/4 n=m
.In this Appendix, the_ convergence of the .proposed fprmu— 0, n—m even, nonzero
lation is assessed. A linear stability analysis of Ed4) is Bym=
carried out using an arbitrary number of modes in the trans- 4nm n—m odd.
verse directior(x). Equations(11) are first linearized around m?(n>—m?)?’

the origin. They reduce to the following equations:
Uy x T Uz = 0, (B1)
Uy = 27y(1=X) = —p x+ (1+ a) (Uy gt Uy ;2), (B2)

Uy = Uyt (1—a)uy +(1+a)uy ,,), (B3)

(B10)

The characteristic equatidB9) yields the marginal stability
curves for an arbitrary number of eigenmodB$)—(B8) in
the (k, Ta, a) space. Note that EqB9) reduces to Eq(A4)
in Ref.[3] for a Newtonian fluid, that is, as— 0. Equation
(B10) is solved using the IMSL-DLFDRG routine.
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